Automatic measurement of left atrial appendage and pulmonary-vein diameter in atrial fibrillation patients using artificial intelligence

Oh-Seok Kwon, Sohyun Yang, Byounghyun Lim, Ze Jin, Daehoon Kim, Je-Wook Park, Hee Tae Yu, MD, Tae-Hoon Kim, Boyoung Joung, Moon-Hyoung Lee, Chun Hwang, and Hui-Nam Pak

Yonsei University Health System, Korea

Korean Heart Rhythm Society
 COI Disclosure

Name of First Author: Oh-Seok Kwon
The authors have no financial conflicts of interest to disclose concerning the presentation

Introduction

- An understanding of left atrial (LA) anatomy and pulmonary vein (PV) diameter is important for the effectiveness and safety of atrial fibrillation (AF)-related procedures.
- However, labor-intensive measurements are required to obtain this information.
- We propose an artificial intelligence algorithm for the automated measurement of PV based on computed tomography (CT).

Methods

- We implemented a mesh-based convolutional neural network for the surface segmentation of four PVs and the LA appendage (LAA) in a 3D LA surface mesh.
- We trained the model with the LA mesh of 210 AF patients' CT scan and validated the accuracy of surface segmentation and PV diameter with independent 158 samples.
- Our algorithm includes two originative methods of surface depth feature and cohesion loss function to improve the performance.

Surface segmentation using meshCNN

(a)

Input LA Mesh
Left atrium surface segmentation procedure using meshCNN architecture.
(a) Enter the LA surface mesh.
(b) The meshCNN model generates region labels for each vertex.

Surface depth feature

- Conventional geometric feature in meshCNN

Relative Geometric Features
\rightarrow Invariant to similarity transformations

5-dimensional vector

- dihedral angle
- two inner angles + surface depth
- two edge-length ratios.

Loss function

Loss $=$ WCE loss + cohesion loss
cohesion loss $=\mid N_{\text {class }}-$ number of cluster \mid

- $\mathrm{N}_{\text {class }}=4$
- Number of cluster = 6

Cohesion loss = 2

- $\mathrm{N}_{\text {class }}=4$
- Number of cluster = 4
- Cohesion loss = 0

How does it work?

Mesh Convolution

Normal of triangle
\rightarrow Consistent ordering in each face
Two valid orderings
$\rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ or $(\mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{b})$

Solve: build symmetric features
$\rightarrow\{e:(a+c,|a-c|, b+d,|b-d|)\}$

How does it work?

Edge Pooling: edge collapse
Delete edge with smallest feature activations
\rightarrow Aggregate features (average pooling)
\rightarrow Update topology

Average pooling aggregation
$\rightarrow 5$ edges to 2 edges
\rightarrow Average per-channel
Edge Unpooling
Partial Inverse of Pooling
\rightarrow Restores upsampled topology (reversible)
\rightarrow Unpooled features weighted combination of pooled features

Feret diameter

Accuracy evaluation of PV diameter measured with manual and automatic procedures.
(a) PV diameters by manual region labeling.
(b) PV diameters by AI-guided region labeling

Results

- We achieved an average Intersection over Union (IoU) of 83.4% and a regional loU from 78.4 to 87.2%.
- The surface depth feature improved the loU by 31.7%.
- The cohesion loss function reduced the fragmentation rate of the surface label by 3.2\%.

Bland-Altman plots

Visualization for monitoring (error detection)

Conclusions

- We proposed an Al-guided automated algorithm for surface segmentation and PV diameter measurement and validated it at both upper PVs and the eccentricity of the PV ostia.
- Al-based algorithms can be utilized to enhance the anatomical understanding of the LA and to streamline labor-intensive manual segmentation procedures for measuring the diameter of PV.

Thank you for your attention.

 oskwon@yuhs.ac